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The local porosity of a real porous material (obtained by averaging over volumes 
containing a sufficiently large number of pores) is different from the mean porosity 
of the material as a whole. This difference is caused by large-scale defects of the 
porous structure and can be treated as a random function of position in the 
porous material. Such a random deviation of the local porosity from the average 
value causes random local flows superimposed upon the mean filtration flow. 
The characteristic scale of such motion is much larger than that of the flow of 
a fluid through individual pores. The phenomenon appears to play an important 
role in transport processes in filtration. 

In  this paper the statistical characteristics of the random fields under con- 
sideration are determined on the basis of the assumption that the local porosity 
is a random function of position with independent increments. Expressions for 
correlations of various quantities are obtained in terms of the characteristics 
of porosity fluctuations and the effective coefficients of diffusion caused by the 
random motions under study are estimated. 

1. Introduction 
In  real porous materials there exist usually two characteristic scales of porosity: 

(i) the fine scale, I ,  of the order of magnitude of small pore channels (or of the size 
of the grains in granular porous materials), and (ii) the scale H 9 1 characterizing 
large-scale inhomogeneities of the porous medium. Such a large-scale inhomo- 
geneity is always present in porous materials (Collins 1961), even in the ideal 
case when the porous medium is formed of identical spheres. In  real porous media 
various processes (such as crack formation, washing out, etc.) as well as stones and 
other inclusions are responsible for the occurrence of large-scale inhomogeneities. 

When treating the filtration of fluids in porous media one must take into 
account these large-scale porosity fluctuations and consider the porosity as 
a known function of co-ordinates. 

However, since knowledge of the detailed structure of the porous medium is 
not available, the fluctuations mentioned appear to be random ones and the 
flow of fluid in the porous medium caused by those fluctuations will be, in some 
sense, like the fluid behaviour in a turbulent rkgime. It is therefore appropriate, 
for the sake of brevity, to name such large-scale fluctuation motion of fluid 
as ‘pseudoturbulence’. 
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As far as the authors know, this 'pseudoturbulent' motion has not been con- 
sidered in previous studies of the filtration through porous media, though it is 
quite clear that the influence of this motion on various transport phenomena in 
filtration processes may well be considerable and even dominating, if the local 
inhomogeneity of the porous medium is high. 

Note two important features of the pseudoturbulent random motion. 
First, since the pseudoturbulence under consideration has nothing to do with 

the problem of hydrodynamic stability of undisturbed filtration flow, we shall 
consider only the uniform case when the fluid velocity and mean porosity averaged 
over sufficiently large volumes are independent of the co-ordinates and study 
the pseudoturbulent motion throughout the entire space. From a physical point 
of view it represents the case when the scale of the average flow is much larger 
than that of the porosity fluctuations. Consideration of the homogeneous case 
can also be justified on grounds of simplicity. 

Secondly, the main factor generating random motions in porous media is the 
inhomogeneities of the local porosity, unlike, for example, the usual turbulence 
where non-linear inertial effects are responsible for random pulsations. 

Suppose that large-scale porosity fluctuations are on average small compared 
with the constant average porosity; then the velocity of random motions will be 
sufficiently small in comparison with the average velocity of the filtrating fluid. 
These assumptions are valid for most porous media (usually treated as 'homo- 
geneous') and enable one to linearize the basic equations with respect to per- 
turbations, thereby permitting complete analysis of the filtration pseudo- 
turbulence. 

It should bo not'ed that this problem of random motions of a fluid filtering 
through an inhomogeneous porous medium has nothing in common with the 
statistical problem of motion of small fluid elements in broken pore channels. 
The latter problem is of interest for the study of convective diffusion in porous 
media and was considered first by Scheidegger (1954) (see also Nikolayevsky 
1959; Scheidegger 1957). 

2. Fundamental equations governing pseudoturbulence and pseudo- 
turbulent diffusion 

We choose the homogeneous solution corresponding to the Darcy law as an 
undisturbed steady flow through the porous medium; porosity fluctuations are 
taken to be independent of time. 

Let ui be the velocity components of the filtrating fluid,p pressure, E porosity, 
r passive admixture concentration. According to 0 1 we have 

(2.1) i 
ui = u;+u;, = E o + g ,  r = ro+Y, 
( 4 )  = 0, ($4) = 0, (a> = 0, (Y) = 0, 

u' < uo, lP;\ <PO, pl < EO,  IYI @ ro, 
u: = const., Po = const. 

Here u!, PO, €0 ar0 the average velocity components, pressure, passive ad- 
mixture concentration and porosity respectively, u;, p', y are their fluctuations 
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caused by the presence of the random value (r (large-scale fluctuation of the 
porosity). In  (2.1) ui is the 'true' velocity of the fluid averaged over sufficiently 
large volumes (of the scale 9 1 but < H ) ;  ui satisfies the relationship = ufi, 
where ufi is the local velocity of filtration. 

The quantity EOU: represents the averaged velocity of filtration in the absence 
of large-scale fluctuations of porosity and is determined by virtue of Darcy's law, 
external macro-characteristics of the filtration regime being given. 

The equations of motion and continuity are taken in the form 

aui as 
axi axi 

E - + + a - =  0. 

Here p is the fluid density, gi is the gravity acceleration and 4 is the drag force. 
Equations (2.2) are essentially a particular case of the equations of two-phase 
flow (suggested, e.g., by Barenblatt 1953; Murray 1965), where one of the 
phases is at  rest,. These equations can be useful in the particular cases when the 
common Darcy equations are inapplicable (e.g. in the case of the filtration through 
a granular bed of sufficiently large particles). For the mean flow (2.2) are identical 
with those of Darcy. Assume, furthermore, the viscous drag tensor 7ij and the 
volume drag force I;"i in the form 

(Usually the term tbij/axj is much less than I$ because the characteristic scale of 
the space variations of averaged velocity field ui is much larger than the charac- 
teristic dimension of pores). 

We take the viscous stress tensor in the form (2.3) based upon the following 
conventional assumptions: (i) the tensor 7ii must depend linearly upon the mean 
velocity gradients tensor aui/axj; (ii) the tensor 7ij is symmetrical (7ij = 7ji), 

which implies the absence of internal rotations in the fluid; (iii) the tensor 7ij is 
a deviator, i.e. tr {7ij] = 7ii = 0. The last assumption is connected only with the 
definition of an isotropic pressure in the given system; it leads to the occurrence 
of the last term in the first expression (2.3) because it follows from continuity 
equation (2.2) that aui/axi * 0 even for incompressible fluids. However, since 
the fluid is assumed to be incompressible, the volume viscosity term in the 
expression (2.3) for 7ir is omitted. An expression for the effective viscosity p ( e )  
has been obtained by Buyevich & Safrai (1967). It should be mentioned that this 
viscosity is larger than that of the filtrating fluid itself po by a factor of the order 
of unity. The factors G,,(E) are assumed to be known functions of E ;  the expression 
for drag force 4 can be reduced in particular cases to the well-known linear, 
quadratic etc. laws of resistance. 
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The equation of the convective diffusion of a scalar admixture is taken in the 
form 

Here Dij are the components of the effective tensor of diffusion governing both 
the substance transport due to molecular diffusion and the convective component 
of the transport due to the mixing of individual streamlines during the liquid 
flow through a broken porous bed. 

Because of its nature, pseudoturbulence is steady; this allows one to omit 
time-derivatives in (2.2) and (2.4) restricting the consideration to the case of 
steady mean and pseudoturbulent flows. 

Making use of the expressions (2.1), one obtains from (2.2), (2.3) and (2.4) the 
following linearized stationary equations of momentum, continuity and diffusion 
for the pseudoturbulent random fields: 

Here the dimensionless variables are 

(The primes of the dimensionless variables in (2.5)-(2.7) and the subscript zero 
of e are omitted for simplicity.) 

Equations (2.5)-(2.7) exhibit a system of five linear equations whose right- 
hand sides contain a random function u which must, generally speaking, be 
given. The problem is, then, to find a random solution of the system (2.5)-(2.7) 
throughout the space, the random process u(x) being given. 

Let us introduce a basic assumption that the random process ~ ( x )  is spatially 
homogeneous, i.e. that ~ ( x )  is a stationary random function of position. In that 
case unknown random fields can be easily calculated in terms of the random 
function u(x) with the help of the well-developed theory of stationary random 
processes. 

Let us introduce necessary two-point correlations 
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Here asterisks indicate conjugate complex values and averaging is carried out 
over space, the vector r being fixed. In  (2.8) (ac) and X(r) are scalars, Ni(r) and 
r,(r) are vectors, and Qij(r) is a tensor. We can also introduce the following 
correlation functions in addition to (2.8) : 

Xo(r) = (u*(x)p(x+r)) ,  N.(r) = (u*(x)vi(x+r)),  
Q!j(r) = Qji(r), YO,@) = (y*(x) vi(x + r)). 

Because of the spatial homogeneity one can easily prove the following 
relationships : X(r) = XO*( - r), Ni(r) = Ne*( - r), 

Qij(r) = QFi( -r), ri(r) = rO,*( -r). 
Next, one might solve equations for the unknown correlations for the pseudo- 

turbulence by virtue of a method similar to that proposed by Chandrasekhar 
(1950) for the treatment of the ordinary axisymmetric turbulence. Such an 
approach was used by Buyevich & Leonov (1967). In  the present paper, however, 
a more efficient procedure is utilized, namely the technique of steady random 
processes. 

3. The solution of the problem when the drag is linear 
Consider, for simplicity, the particular case when the resistance l$ is equal to 

eG(e) ui, where G(s) is related to the permeability of the porous medium K(s)  by 
the formula 

G(E) = p o K - ' ( ~ ) .  (3.1) 

In  this case the equations of momentum (2.5) will take the form 

It can be easily seen that the pseudoturbulence under consideration is always 

Let us represent the random functions u, p, vi, y by stochastic Fourier- 
axisymmetric. 

Stieltjes integrals: 

u(x) = eimdZ,(K), p(x) = jeiKxdz,(K), 

vi(x) = eiK%Z,(K), Y(K) = ei"'dZ,(K). 

s 
s s 

Here the integration is carried out over the entire wave-number space. 
The equations (2.6), (2.7) and (3.2) lead to the following system of linear 

equations for random increments : 

(3.3) 

- i R W k K k  dZ,j - ~ R K ,  dz, - K2 dZ,j - 4K.j K k  d z , k  - pdZvj = - a W j  dz,, 
€ K j d Z , , j  = - WjKjdz,, 
- ( d j k K j K k  + i w j K j )  dz, = i r ° K j  dZ,j = - i € - l r o W j K j  dzv. 
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This system yields the following relationships : 

i r o W j  K j  
dZ = -- dZ,. + ~ w ~ K ~ )  

1 (3.4) 

A generalization of those relationships to more complicated cases, e.g. to the 
case of a non-linear law of resistance, results in some unessential complications 
of the linear algebraic system (3.3). 

Assuming that the random increments dZ, etc. describe random processes 
with independent increments, one has for the correlation (VV) 

Further, because of the statistical orthogonality of ~Z,(K’) and dZ,(K”), we 
have 

(dZ,*(K’) dZ,,(K”)) 0 (K’ $. K”), 

= ( Y ( K )  (K’ = K“). 
lim 
dK-0 dK1 dK2 dK3  

Here Y(K) is the spectral density of the process ~ ( x )  which is assumed to be 
an isotropic function of the modulus of K. 

Introduce now spectral densities of the unknown random processes s(K), 
n i ( ~ ) ,  q i j ( ~ ) ,  Y ~ ( K )  which are related t o  the two-point correlations defined before 
in (2.8) by virtue of Fourier’s transformation: 

(VV) = (C*(X)V(X+r)) = e i K r Y ( K ) d K .  s 
s 
s 
s 

S(r) = (p*(x)V(x+r)) = e irrg( tc)dK,  

Ni(r) = (v:(x) V(X+ r)) = eiKrni(K) dK, 

Qij(r) = (v:(x) vj (x + r)) = eiKr qi, (K) drc, 

ri(r) = <v,*(x) y(x + r)) = S e i K r y , ( c )  d K .  

Let us now introduce a spherical co-ordinate system K, q,  5, so that K~ = KK, 

= K - ~ ( K w )  and 5 is the cosine of the angle in the plane normal to the 

From the expressions (3.4) one easily obtains the following expressions for 
vector w. 
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the spectral densities (the porous medium is assumed to be, on the average, 
isotropic) : 

(3.5) I 

a, = all, a, = a,, = a33. 
The formulae (3.5) represent a complete solution of the formulated problem 

of the pseudoturbulent motion in a porous medium with large-scale fluctuations 
of porosity. 

Consider now some qualitative conclusions from these formulae. 
Note, first, that all the correlations are invariant with respect to a complete 

rotation group about the axis w (i.e. with respect to revolutions around this 
axis and reflexions in planes containing w), but not invariant to reflexions in 
planes perpendicular to the vector w. In this respect the random motions under 
consideration differ, for example, from the axisymmetric turbulence investi- 
gated by Batchelor (1946) and Chandrasekhar (1950) whose characteristics are 
not influenced by reflexion in the planes normal to the w-axis. 

This non-invariance is closely related to the fact that all the correlations in 
(3.5) are linear combinations of true- and pseudotensor quantities; that means 
that the directions along w and against it are not equivalent. Thus, if one formally 
introduced vorticity transfer coefficients (based upon the mentioned correlations 
in a common way) they would prove to be different along these directions. It will 
be so even if the correlation (uu) is assumed to be a true scalar function. The 
physical meaning of this non-invariance is explained by the fact that the pseudo- 
turbulence is accounted for by external factors, namely by large-scale fluctua- 
tions of porosity. From the mathematical point of view, the expressions obtained 
for the correlations are the particular solutions of a non-homogeneous system of 
equations with given right-hand sides; and not every symmetry transformation 
is allowable with these right-hand sides. 

Another peculiarity of the pseudoturbulence is the occurrence of an additional 
liquid flux equal to the real part of Nj(0 )  = ( W ~ U > ~ ~ = ~ .  This effect exhibits itself as 
a certain change in the resistance of the porous body to the filtration flow and is 
accounted for by non-linear dependence of the force 4 in (2.2) on porosity E. 
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4. Calculation of correlation functions and analysis of diffusion pro- 
cesses in porous materials with an isotropic inhomogeneity 

The function Y(K) appearing in expressions for correlations (3.5) is thus far 
arbitrary except for some purely mathematical properties (sufficient smoothness, 
regularity, proper order of decrease a t  infinity, etc.). To carry out calculations 
we assume in this section that Y(K) is the Fourier transformation of a Gaussian 
function of (au) = ui e-@, i.e. 

Using the expression (3.1) for G(s) ,  let us estimate the quantities P-l and RP-l 
occurring in the expressions for correlations (3.5) : 

1 p ( s ) K ( ~ )  pu°K(e) at dlnK p=x-> P=T' p="- as * (4.2) 

For real porous media like soils, the values of K(s)  range usually from 0.01 to 10 
Darcy (or to lo-' cm2) and H may be taken from 1 to 10 cm. Then for most 
cases of practical importance the quantities RP-l and p-' are negligible in com- 
parison withunity. The quantity e-iKa differs from zero essentially up to K w 2-3. 
Therefore K2,8-' is also small compared with unity. These estimations allow one to 
simplify considerably the integration of the expressions (3.5) by neglecting terms 
of the order of K ~ P - ~  and RP-l. (As it  has already been noted, there are some 
exceptions, e.g. filtration through a granular bed with large permeability; for 
such cases the linear expression for the drag is insufficient.) 

Let us introduce spherical co-ordinates r,  19, q5 into (3.5); choosing the r-axis 
as the polar axis in the wave-number space, we have 

7 = cosBcosX+sinBsinXcos#, v = cosx = r--l(rw), 

dK = K2 sin BdKdBd$. 

After lengthy calculations we obtain the following formulae for the correlation 

1 (4.3) 
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Among these formulae the first one is exact and all the others were obtained 
allowing for the estimations mentioned above. It can be easily demonstrated that 
none of the correlations (4.3) has a singularity at T = 0. When calculating Pi it 
was assumed that d,, d, < 1. Indeed, if D,, D, N uO1 we have d,,d, N l /H  < 1; 
if, on the contrary, D,, D, N J{uI2)H and the last quantity exceeds uol, we never- 
theless have d,, d, N ,/{u12}/u0 < 1. 

It is noteworthy that the expressions (4.3) are true tensors; i.e. pseudotensor 
components of the correlation functions mentioned in $3 have the order of 
magnitude of p-l and Rp-l. 

Note, next, that neglecting the terms of the order of p-' and Rp-l compari- 
son with unity corresponds to omitting convective inertia and viscosity terms 
from the equations (3.1) or (2.2) and (2.5) ; i.e. the expressions (4.3) correspond to 
two-point correlations of random fields of p and v governed by perturbed Darcy 
equations. In other words, to obtain (4.3) one could proceed from Darcy equations 
and not from the equations (2.2). 

From (4.3) at r = 0 we have the following relationships: 

The second quantity in (4.4) describes the increase of the filtration flux related 
to the external pressure gradient when one substitutes for a homogeneous porous 
medium an inhomogeneous one with the same mean porosity. The additional 
filtration flux (demonstrated by Buyevich & Leonov 1967) is thus positive and 
is of the second order of magnitude of a,. 

As is readily seen from (4.4), the phenomenon considered here is essentially of 
'longitudinal' nature ; i.e. random velocity components in the direction along the 
mean flow are considerably larger than those in the transverse direction. The fluid 
velocity is changing from point to point in such a way that the dispersion of the 
local fluid flow is comparatively small. It is clear from (4.4) that in the case under 
consideration all the two-point correlations are of partly different natures from 
the correlation (uu). In  the expressions for those correlations there are terms 
proportional to the error function @(r). This results in the occurrence of the com- 
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ponents decreasing to zero as r-" (along with components decreasing as e+') 
in the expressions for correlations. 

By means of the correlations (4.3) it is easy to calculate various scales of pseudo- 
turbulence and to develop, on this basis, a semi-empirical theory of transport 
processes, like similar theories in ordinary turbulence. It is obvious that the 
pseudoturbulence leads, first of all, to the occurrence of an additional longitudinal 
diffusion flow. 

To obtain a formula for the effective tensor of diffusion caused by pseudo- 
turbulence we shall consider, following Batchelor (1952), the dispersion tensor 
(yiyj) which is dependent only on time for the homogeneous field. Here yi 
is the distance covered by a certain fluid particle during the time interval t ;  
the averaging in (yi yj) is carried out over various initial positions of the particle 
or over a large number of liquid particles. The usual procedure leads to 

Here Rij (7) is the Lagrangian correlation of random velocities. By definition, 
the tensor of pseudoturbulent diffusivity is equal to 

In a general case, a knowledge of the relationship between the Lagrangian and 
Eulerian space and time correlations is not available, and the former can be 
expressed in terms of the Eulerian space-time correlation only formally. However, 
since the pseudoturbulence under consideration is steady by its nature (see $2))  
we have for sufficiently small values of the diffusion time t 

where v(kL) is the total velocity of the chosen fluid particle. Assuming vfL) M wk, 
according to the above assumptions, we obtain the equation 

In particular, from (4.3) we easily obtain formulae for the dimensionless 
coefficients d?; at small t :  

Here dimensionless time t is based upon the scale HluO according to $ 2 .  When 
t is large the assumption viL' M wi used above is not valid. For example, if we 
would nevertheless accept it, then as t -+ co we obtain 



The effect ofJluctuations in porosity 381 

It is obvious that such a representation of the diffusivities at  large values oft is 
wrong. To determine the diffusivities at  t -+ 00 one has to evaluate the scales of 
the correlations in (4.3). Then one obtains the following approximate expressions : 

(here the summation over i is not implied). 
It should be mentioned that in deriving all the above expressions the possibility 

of exchange of the chosen fluid particle with other particles as well as with the 
porous body skeleton was not taken into account. The treatment of this ex- 
change can be carried out formally following the method proposed by Burgers 
(see Hinze 1959, 0 5.4). 

The effective coefficients di j  (aij = d$ + d l j )  of the tensor of diffusion caused by 
irregularity of pores are of the order of 1/H. Thus, the contribution of the pseudo- 
turbulent transfer to the total longitudinal and transverse transfer becomes 
dominant when 1/H < at, a condition which is probably satisfied in practice. 
Only in that case is the above consideration worth while. 

The authors acknowledge Prof. G. I. Barenblatt for his continued support 
and help in discussions. 
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